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Abstract

Spatial ecology is becoming an increasingly important component of resource management, and the general
monitoring of how human activities affect the distribution and abundance of wildlife. Yet most work on the re-
liability of sampling strategies is based on a non-spatial analysis of variance paradigm, and little work has been
done assessing the power of alternative spatial methods for creating reliable maps of animal abundance. Such a
map forms a critical response variable for multiple scale studies relating landscape structure to biotic function.
The power to reconstruct patterns of distribution and abundance is influenced by sample placement strategy and
density, the nature of spatial auto-correlation among points, and by the technique used to extrapolate points into
an animal abundance map. Faced with uncertainty concerning the influence of these factors, we chose to first
synthesize a model reference system of known properties and then evaluate the relative performance of alterna-
tive sampling and mapping procedures using it. We used published habitat associations of tree nesting boreal
neo-tropical birds, a classified habitat map from the Manitou Lakes area of northwestern Ontario, and point count
means and variances determined from field studies in boreal Canada to create 4 simulated models of avian abun-
dance to function as reference maps. Four point sampling strategies were evaluated by 4 spatial mapping meth-
ods. We found mixed-cluster sampling to be an effective point sampling strategy, particularly when high habitat
fragmentation was avoided by restricting samples to habitat patches > 10 ha in size. We also found that of the 4
mapping methods, only stratified ordinary point kriging (OPK) was able to generate maps that reproduced an
embedded landscape-scale spatial effect that reduced nesting bird abundance in areas of higher forest age-class
fragmentation. Global OPK was effective only for detecting broader, regional-scale differences.

Introduction

Spatial ecology is becoming an increasingly impor-
tant component of resource management, and the
general monitoring of how human activities affect the
distribution and abundance of wildlife. Most work on
the reliability of sampling strategies is based on a
non-spatial analysis of variance paradigm, and a con-
siderable body of literature has developed to estimate
the optimal design and reliability of non-spatial wild-
life monitoring data (e.g., Hayes and Steidl 1997,

Steidl et al. 1997). Such studies have included the
simulation of environmental impacts, and analysis of
statistical power using Monte Carlo techniques (e.g.,
Benedetti-Cecchi 2001), and have also examined
sampling strategies specific to forest monitoring
(Foster 2001) and forest songbird analysis (Carlson
2001; Thompson et al. 2002). For traditional power
analysis, the general aim is to determine the appro-
priate sampling strategy and sample size to reliably
answer questions, given an estimated variance and
arbitrarily determined effects size. Under the analysis
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of variance approach, spatial auto-correlation is an
unwanted complication that violates the indepen-
dence of individual observations. Yet in landscape
ecology, this violation almost always occurs because
vegetative patterns, and associated habitat patterns,
are driven by contagious and non-random patterns of
environmental factors and natural disturbance (Foster
et al. 1998; Dale and Fortin 2002; Fortin and Payette
2002; Ryan 2002). Indeed, the creation of a contigu-
ous surface-response or contour map of animal distri-
bution is best accomplished when the degree and
form of spatial auto-correlation among sample points
is known.

Hence, in the field of spatial ecology, the challenge
is to determine the appropriate sampling scheme
(where scheme is defined as the combination of sam-
pling strategy and sample point density) and mapping
approach required to estimate spatial auto-correlation,
and to create a map that reliably reproduces an initial
spatially defined variance pattern (e.g., Fortin et al.
1989; Rossi et al. 1992; Legendre 1993; Bellehumeur
and Legendre 1998; Gunnarsson et al. 1998; Dessard
1999; Roy and Tomar 2000; van Groenigen 2000;
Hunsaker et al. 2001; Lin and Rouhani 2001;
Lichstein et al. 2002; Venier et al. 2002). The emerg-
ing disciplines of spatial accuracy assessment and the
statistical analysis of spatial data reflect the general
importance of this issue (e.g., Lowell and Jaton 1999;
Liebhold and Gurevitch 2002). A spatial abundance
map forms an important exploratory tool for monitor-
ing population trends in changing landscapes, and
makes a useful response variable for multiple scale
studies relating landscape structure to biotic function.
This is especially important when a compartmental
approach to multiple scale habitat modelling is used,
where a hierarchy of window sizes is used to estimate
landscape pattern indices and associated average spe-
cies abundance within windows (e.g. Potvin et al.
2001). The sampling scheme itself presents several
challenges as landscape patterns can be structured hi-
erarchically (Hall et al. 1988; Kotliar and Wiens
1990; Royle and Berliner 1999; Venier et al. 1999;
Boone and Krohn 2000; Elkie and Rempel 2001), and
spatial variance across spatial scales may be found in
complex, nested patterns (Legendre and Fortin 1989;
Bellehumeur and Legendre 1998; Meisel and Turner
1998).

For spatial mapping, two critical uncertainties are:
(1) the best sampling scheme to estimate spatial auto-
correlation, and (2) the best interpolation technique to
reliably map the patterns of distribution and abun-

dance. These factors interact, so they should be ad-
dressed in a factorial manner. Our approach was to
first create a model system with a spatially defined
variance surface (simulated map of bird abundance),
and then evaluate the relative performance of alterna-
tive sampling and mapping procedures. The model-
ing approach described here provides an effective
means of exploring and contrasting the strengths of
alternative strategies. This becomes especially impor-
tant for more complex sampling and mapping prob-
lems, where the interaction of errors complicates their
theoretical modeling.

The objectives of the research are to: (1) develop
and demonstrate a simulation modeling approach for
comparing and assessing the performance of alterna-
tive sampling and mapping systems, where the impe-
tus is to create a spatially accurate map depicting the
pattern of abundance, and (2) compare the perform-
ance of alternative mapping procedures for detecting
spatially explicit, landscape-level effects on bird dis-
tribution and abundance. The reference point for
comparison is a simulated spatial distribution of bird
abundance based on habitat specific means and vari-
ances from the Manitou Lakes area of northwestern
Ontario.

Methods

This study generated 4 simulated reference maps of
bird density, differing only in their variance-mean ra-
tio, to evaluate the sampling and mapping systems.
Point sample datasets were obtained from the maps
by applying 4 sampling strategies in combination
with an additional spatial restriction (based on mini-
mal patch area or edge distance). Following this 4
mapping approaches were used to create grids of bird
density. The performance of the mapping approaches
was evaluated by using 2 formal performance indices,
semi-variance model validation and point kriging
cross-validation, as well as regression-based mea-
sures of map correspondence. Technical details of
these methods follow. To demonstrate properties of
the simulation modeling system 8 case studies were
constructed, using selected combinations of these
methodologies. The description and motivation of
these case studies follows as well.
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Figure 1. Sequence to create reference bird count simulations. (a) Landsat image classified into 7 habitat classes. For simulations, h = habitat
class / 10; (b) fragmentation map, where values (f) between 0.75 — 1.0 represent the variance of young and old age class edges within a
500-m moving average window; (c) reference map LV2, where values represent log-transformed number of birds/ha (i.e., 100 m raster cell),
with mean = 1.53 and s* = 0.074; (d) reference map HV2, where mean = 1.41 and s> = 0.379. Colors for maps (c) and (d) range from cyan
(lowest density) to dark red (highest density), with each color separated by 0.5 standard deviation.

Simulated reference maps

We generated simulated reference maps of breeding
bird abundance by modeling abundance based on
habitat (landcover) associations. Both mean abun-
dance and variance were defined as functions of
landcover type (h), and 4 alternative models were
created. These consisted of two low variance models
(LV1, LV2), where variance for the random model
was 0.5 and 1 times the mean abundance for the
landcover type, and two high variance models (HV1,
HV2) with coefficients of 2 and 4. The 7 landcover
types, classified by satellite imagery (Figure 1a), were
assigned variable densities of 0 to 5 counts/ha in a
manner consistent with known habitat associations of
tree nesting neo-tropical birds.

This initial model can be fully specified without
any knowledge of the spatial arrangement of habitat
patches, and thus over simplifies the complex inter-

action between a species and its habitat. For example,
high interspersion between young and older forest
age-classes (fragmentation) is known to reduce bird
densities (e.g., Andren 1994; Austen et al. 2001;
Boulinier et al. 2001). To investigate this landscape-
level effect, a fragmentation thematic layer (f) was
created by running a 500 m neighborhood analysis of
a binary map containing only young (<< 20 years)
and old forest-age classes (Figure 1b). The observed
values ranged between 0-0.25 within the Manitou
boreal landscape, and these values were used to de-
press the mean abundance value as a direct propor-
tion.

The following random model was used to generate
a map at a pixel resolution of 100 meters:

Myys = rxy(hx Y (V.xy;s)) (1.0 = f:ry)
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where xy are the map column and row coordinates,
s represents the 4 low and high variance scenarios, r,,
is a random normal deviate with a landcover specific

mean /,, and standard deviation of'\/ (vy.), fy, 18

the cell value of the fragmentation thematic layer, and
m,,,., is the resulting cell value for map s. Significant
digits on internal calculations were maintained before
final truncation to integer values; maps values < 0
were set to 0.

Vyy:s fOr maps s = 1 ... 4 is defined as:

Vi1 = By ¥ 0.5 (LV1)
Vi = Iy % 1 (LV2)
Vi = By #2 (HV1)
Ve = hyy *4 (HV?2)

The range of means and variances were established
by reviewing values for several species from a review
of breeding bird point-count studies in the boreal for-
est (Hobson and Schieck 1999). Bird counts at a lis-
tening station cannot be less than zero, so map values
< 0 were set to 0. This resulted in a log-normal dis-
tribution of the count values; to remedy this situation
m,,.; values were transformed to re-establish a nor-
mal distribution using the negative binomial transfor-
mation (Elliott 1977):

My = log,(m,,. + 1.0)

Although the truncation depressed the initial within
class variation, we reduced the effect of the trunca-
tion by creating the range of variance scenarios, m1 —
mé4. The transformation is also efficient at removing
the variance-mean heteroscedasticity defined during
the model formulation. Count data typically requires
a variance stabilizing transformation, and although
the repulsed distribution of territorial sites suggests
that a transformation of lesser severity may be suffi-
cient, studies to date indicate that the applied trans-
formation is appropriate (e.g., Hobson et al. 2000).

Sampling strategies
We investigated 4 sampling strategies (note that open

water was never sampled for any strategy). A com-
puter program was written by one of us (RK) to gen-

erate the point sample dataset using any of the various
options outlined below:

(i) Random: Points were selected without respect
to landcover type.

(ii) Systematic: Points were selected as the center
of a 2500 ha hexagonal grid, without respect to land-
cover type.

(iii) Mixed-cluster: This strategy combines ele-
ments of the staggered systematic, clustered, and ran-
dom strategies. Points were selected in clusters, with
one cluster in each element of a 2500 ha hexagonal
grid. The starting point for each cluster was randomly
selected within a 2000 m radius of the hexagon cen-
troid, and subsequent points were randomly taken
within 1000 m of this start location (Figure 2). Points
were selected without respect to area of eligible land-
cover types. This formal definition originates here,
and was motivated by the desire to create an evenly
spaced distribution, but at the same time avoid place-
ment of points in non-eligible classes such as water.

(iv) Modified stratified-random: Points were posi-
tioned with respect to the proportions of landcover
types at the neighborhood level, rather than the glo-
bal level. We used a compartmentalized approach to
stratification, where we first overlaid a hexagonal
grid, and then determined the area of each landcover
type (strata) within each hexagon grid cell (compart-
ment). The stratification grid was a 2500 ha hexagon
grid, with cell centers separated by 5373 m, which we
nominally refer to as 5000 m. The number of points
within each grid cell was initially set to 5 points, but
was adjusted by the proportion of non-water area;
water being the only non-eligible habitat type. These
points were then assigned in proportion to each habi-
tat type (i.e., if 70% of the landcover was mixedwood,
then 70% of the points would be placed within the
mixedwood type). Assigned points were placed ran-
domly in the designated habitat. Again, this formal
definition of the strategy originates here.

Two other sampling restrictions were also investi-
gated: a restriction on minimum patch size, and a re-
striction on sampling close to stand boundaries (e.g.,
patches a minimum of 10 ha, and points at least 100
m from a stand edge). These restrictions were applied
to each of the sampling strategies, and for each sam-
pling strategy, a range of synthesized sample point
densities was investigated.
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Figure 2. Mixed-cluster sampling. A random point (triangle) is selected within 2,000 meters of the hexagon center (round), then 5 sample

points (square), are randomly selected within 1,000 m of the triangle.

Mapping approaches

The effect of mapping procedure on landscape-level
density estimates was determined by comparing 4
different mapping approaches: (i) the non-spatial as-
signment of estimated mean abundance values to each
habitat type occurring in the Landsat-based landcover
map, (ii) spatial interpolation through ordinary point
kriging (OPK), (iii) spatial interpolation through OPK
with habitat as a covariate, and (iv) spatial interpola-
tion through stratified OPK with habitat as the strati-
fication criteria. We follow Wallerman et al. (2002) in
terming OPK “‘global OPK” when all points are used.
All mapping approaches used synthesized points gen-
erated by the mixed-cluster strategy with a 5000 m
spacing of 5-point cluster samples.

Stratified OPK is a 4-step procedure: (i) sample
points are overlaid on the Landsat-based landcover
map, and the habitat type underlying the point is de-
termined; (ii) in turn, an interpolated surface is cre-
ated from the subset of points corresponding to each
landcover type; (iii) conditional modeling is used in
the GIS to determine, for each cell, what habitat type
it belongs to, and subsequently the appropriate inter-
polated surface to look up the abundance value, and
(iv) those grid cells which fall beyond the defined
range of spatial autocorrelation from observed data
points (i.e., no-data holes within the kriged map) are

assigned the expected (mean) value for that habitat
type. Note that OPK with covariates modifies the ex-
pected (interpolated) value based on the relationship
between habitat type and sampled bird abundance,
whereas stratified kriging uses OPK to create separate
surfaces of bird abundance for each habitat type.

Performance indices

Semi-variance model validation, point kriging cross-
validation, and regression models were used to deter-
mine how well the sampling strategies modeled
spatially explicit patterns of distribution and abun-
dance.

Semi-variance model validation provides an index
of how well spatial autocorrelation is modeled, which
in part determines our ability to recreate the spatial
patterns of abundance from the point sample data.
With only a few, sparsely distributed points, spatial
auto-correlation among data points will be modeled
less well than if point density is relatively higher
(where point density is number of sample points per
unit area). Spatial-autocorrelation was modeled by
fitting various standard model forms to the semi-vari-
ogram, (Goovaerts 1997), and then choosing the
model form with the best fit.

Point kriging cross-validation was used to assess
the performance of the kriging interpolation. This is a
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jack-knife cross-validation procedure whereby a
sample point is removed, the map re-interpolated at
the location of the removed sample point, and the cell
value at the removed sample point estimated from the
interpolated map (Davis 1987). When repeated for
each sample point, a regression of observed versus
calculated values can be created. For a well modeled
spatial relationship, the slope of the regression and
the proportion of accounted variance (r?) will both
approach 1. We chose 1* as a performance measure
for its simplicity and ease of interpretation. Although
there are other performance statistics available, none
is without limitation (Goovaerts 1997). The perform-
ance measures were applied here as an exploratory
comparative tool among the various sampling
schemes, and not as a rigorous test for “best model”.

Regression models, both simple and multiple, were
used to establish the degree of correspondence
between the reference and interpolated maps, on a
cell-by-cell basis.

Case studies

Eight case studies were used to demonstrate the
properties of the simulation system, and results of the
8 cases are presented in Results sections 3.1 — 3.8,
respectively.

Case 1. presents the underlying characteristics and
spatial structure of the LV1, LV2, HVI and HV2
simulated reference maps. Sill values and the propor-
tion of structured variance were examined after ap-
plication of OPK from ten runs of 2880 randomly
placed points. Subsequent analyses used only the LV2
and HV2 reference maps.

Case 2. evaluates the effect of edge proximity and
patch size on mapping performance by applying the
mixed-cluster strategy using a 5000 m spacing, a
2000 m primary radius, 1000 m secondary radius and
5 points per cluster. Samples were eliminated from
patch sizes less than 10 ha or edge proximities of less
than 100 m. Based on these results all subsequent
analyses applied both spatial restrictions.

Case 3. evaluates each of the 4 sampling strategies
on ca. 2000 points drawn from the LV2 reference
map. Following OPK the semi-variance and cross
validation statistics were used to evaluate the
performance. Our variances did not follow a normal
distribution (Zar 1984), so hypothesis testing of re-
gression r* values was generally conducted using a
non-parametric test (Kruskal-Wallis k-independent
samples). In several cases the principal question was

related to main effects versus interactions, so fixed-
effects analysis of variance was used to explore inter-
actions, recognizing that the p-values may be biased.
The p-values were used to evaluate trends in
performance, not to conduct inferential hypothesis
testing.

Case 4. evaluates the effects of sample density on
mapping performance. We evaluated mixed cluster
sampling on the LV2 reference map across five sam-
pling densities (1,000 — 2,000 m spacing of 5 points
clusters). OPK was used for interpolation, and the
semi-variance and cross-validation techniques were
the performance measures.

Case 5. evaluates the power of the 4 mapping ap-
proaches (see above) to effectively detect a land-
scape-level spatial effect — the depression of popula-
tion abundance due to fragmentation of the landscape.
This case is essentially an example application of
spatial modeling, where two landscapes, one frag-
mented, the other not, were compared to the reference
map in terms of their estimated mean population den-
sity. Recall that the simulated bird abundances were
modified by a fragmentation layer, where densities
were decreased from 0 — 25%, based on the degree
of fragmentation. Performance was based on the de-
viation between the true and estimated weighted
means within the fragmented versus un-fragmented
landscapes. Analysis was restricted to deciduous,
mixedwood, and conifer mature forest types.

Case 6. evaluates the influence of assessment scale
versus mapping approach. Here we characterized the
difference between alternative mapping approaches
(e.g., global OPK and stratified OPK) in representing
fine scale versus broad scale patterns in the landscape.
To do this, we overlaid 9 hexagonal grid layers, with
grid cells ranging from 10 — 33670 ha, on both the
reference and the interpolated maps, and then calcu-
lated the weighted average of abundance within each
hexagonal grid cell (Figure 3). This procedure was
repeated 6 times by offsetting the grid in such a man-
ner as to minimize the overlap held in common over
all 6 trials, and then re-calculating the regression pa-
rameters and their mean values. A computer program
to automate this procedure was written by one of us
(RK). Under this analysis approach, data smoothing
occurs across a range of spatial scales, so it is pos-
sible to evaluate the spatial scale at which the map
performs most effectively, and scales at which differ-
ent mapping approaches converge or diverge with re-
spect to performance indices.
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Figure 3. Comparison of reference LV2 basemap (a) with interpolated map (b). Colors as in Figure lc. Hexagon overlays of 10000, 1000,
100, and 10 ha grids illustrate the major scales for the grid analyses, where analyses are based on regressions of the weighted average of
density within each grid cell for the base and interpolated maps. Mixed-cluster sampling is illustrated, where clusters are nominally 5000 m
apart, with all 5 points of a cluster within 1000 m of the cluster start point (see Figure 2).

The overall correspondence between the reference
maps and interpolated maps was evaluated by deter-
mining the weighted mean within each hexagon, and
through simple regression relating the two values:

r=m*k+b

where 1 is the weighted log-transformed mean abun-
dance (loge (x+1)) of birds within the reference map,
k is the same for the kriged map, i is the hexagon cell
number, m is the slope, and b the intercept. A well-
modeled relationship will approach a slope of 1 (low
bias), and 1 of 1 (high precision). Once again com-
parisons were made among the sampling strategies.

Case 7. evaluates the effects of sample point den-
sity on the power of stratified OPK to detect a land-
scape-level spatial effect. The evaluation is based on
a multiple linear regression analysis of accuracy ver-
sus inter-cluster spacing, number of points within a
cluster, and total number of points. The accuracy in-
dex was defined as the deviation from the estimated
mean population density (loge (x+1)) of birds found
in the reference fragmented landscape versus the in-
terpolated fragmented landscape. The deviation, or
error in the estimate of the mean is:

A=\/(x—y)?

where A is the distance between weighted means, and
x and y are the weighted mean bird densities within
the landscapes for the reference and interpolated
maps, respectively. Comparisons were made for the
both the high- and low-variance simulated abundance
maps HV2 and LV2.

Sampling densities were compared using mixed-
cluster sampling, with clusters ranging from 2000 —
10,000 m spacing, and with within cluster point
counts of 3 and 5. We were unable to find kriging so-
lutions for 3-point clusters at the 10,000 m spacing
level, so this combination was dropped from the
analysis.

Case 8 evaluates the practicality and logistics of
implementing principles of the preferred sampling
scheme. The best computer-generated sampling strat-
egy was applied in an actual field study.
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Table 1. Summary statistics within individual habitat types for base reference map, LV2, following loge (x+1) transformation.

Habitat Type (h) Initial target mean'. Final map mean? Var CoV Area (ha)
Water (0) 0 0 0 221211

Wetlands (1.5) 0.92 0.866 0.028 3.18 22872
Recent Disturbance (2.5) 1.26 1.064 0.019 1.76 87909
Deciduous (3.0) 1.39 1.338 0.023 1.73 71020
Mixed Deciduous (4.0) 1.61 1.538 0.023 1.48 174565
Mixed Conifer (4.5) 1.70 1.658 0.020 1.22 280328
Conifer (5.0) 1.79 1.721 0.021 1.22 141327

'Tnitial target mean, before application of landscape-level fragmentation

effects (loge ((h) + 1)).
2Map mean values after application of fragmentation effects.

Table 2. Summary of variance estimates (across all habitat types) from reference maps, sample points', and semi-variance analysis', follow-

ing loge (x+1) transformation.

Mean Variance Semi-Variance Analysis

Map Sample Map Sample Sill Nugget Prop2
LV1 exp 1.53 1.52 0.062 0.071 0.071 0.011 0.849
LV2 exp 1.52 1.51 0.074 0.084 0.083 0.025 0.700
HV1 linear 1.50 1.49 0.133 0.144 0.159 0.114 0.284
HV2 linear 1.41 1.40 0.379 0.388 0.402 0.359 0.100

"Values based on means of 10 sampling simulations of 2280 points each.

2Proportion of variance attributable to spatial structure

Results
Spatial structure of simulated reference maps

As expected, the application of fragmentation effects
resulted in a consistently lower mean (log. (x+1)
transformed) landcover values than the starting val-
ues, as illustrated by the summary statistics for map
LV2 (Table 1). Sill values of the selected semi-vari-
ance models (where sill = structured + unstructured
variance) differed little from overall point-sample or
reference-map variance, so the semi-variance models
were performing well with respect to modeling over-
all variance. There was no evidence of anisotropic ef-
fects for any of the maps; so all kriging analyses were
based on isotropic models.

For the low variance reference maps (LV1 and
LV2), the proportion of structured variance was 0.85
and 0.70, respectively (Table 2). The relatively high
degree of structural variance detected in these maps
is directly related to the spatial organization of the
landcover types. Landcover types (open water, mature
forest, immature forest, etc.) are not organized
randomly in space, but are the consequence of highly
structured, contagious events on the landscape (e.g.,
wildfire and geo-fluvial processes). Hence much of

the detected spatial pattern in the simulated bird
abundance is a consequence of the non-random asso-
ciation of landcover types (as mapped by classified
Landsat TM imagery) that were used for generating
the reference maps for the study area. As map vari-
ance increased, the ability to detect structural variance
decreased. The proportion of structural variance de-
tected dropped to 0.284 and 0.1 for maps HV1 and
HV2, respectively. High inter-site (i.e., inter-pixel)
variability (see Figure 1d) reduces the ability to
model underlying structural variance.

The semi-variance in the two low-variance maps
was modeled with an exponential model, whereas the
higher variance maps (HV1 and HV2) followed a lin-
ear model (Table 2). Goodness-of-fit of the semi-var-
iance model was indicated by 2, and the two low
variance maps performed substantially better than the
high variance maps (x> = 29.3; df = 1; p < 0.001)
(Table 3). The effective range of estimated spatial
auto-correlation was about 6 times greater with the
low variance maps, and at 60,000 m, is approximately
equal to the extent of the study area. It is noteworthy
that a variety of non-linear models (e.g., spherical,
exponential, and Gaussian) performed almost equally
well for the low-variance maps, but we found that
only the linear model provided a reasonable estimate



Table 3. Performance of semi-variance modell (model fit) and
point krigingl (cross-validation) for reference maps with increas-
ing among-cell variance.

Reference map  Map s> Model fit (?)  Cross-validation r*

LV1 0.062 0.940 0.727
LV2 0.074 0.936 0.563
HVI 0.133 0.529 0.181
HV2 0.379 0.452 0.038

"Values based on means of 10 sampling simulations of 2280 points
each.

of sill variance for the high-variance maps. The lin-
ear model assumes a constant rate of change in spa-
tial auto-correlation across the entire range of sample
points, and is reflective of a less spatially structured
distribution.

Using the exhaustive point samples, we calculated
kriging cross-validation 1* for the 4 maps to
determine how among-cell variance in the reference
maps would be expected to affect kriging perform-
ance. Cross-validation of sample points was related to
map variance, with 1> varying from 0.727 (LV1) to
0.038 (HV2) (Table 3). Kriging performance was sig-
nificantly higher for the 2 low variance maps than the
2 high variance maps (x> = 29.7; df = I; p <
0.001). Further analyses were restricted to reference
maps LV2 and HV2.

Edge proximity and patch size effects

Both placement of samples with respect to distance
from edge, and minimum patch size affected sample
performance. Eliminating samples < 100 m from
habitat edge improved mapping performance (Figure
4), as did increasing minimum patch size. The edge
sampling restriction, however, also effectively re-
sulted in a minimum patch size restriction because
edges are defined by 1 ha pixels. Thus patches with
sufficient internal core area to permit sample place-
ment away from an edge are all > 9 ha. At the 10 ha
min. patch size the “edges excluded” strategy has
better performance than the “edges included” strat-
egy, but at the 100 ha min. patch size there is no dif-
ference between strategies. Thus the edge restriction
has an effect within smaller, irregularly shaped,
patches but is insignificant for larger patch sizes
where few points would randomly fall within the
proximity threshold.
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Figure 4. Effect of excluding edges, and constraining minimum
patch size, on mapping (cross-validation 1) performance. Points
were selected using mixed-cluster sampling (5000 m spacing be-

tween clusters, 1000 m radius of points within a cluster). Error bars
are 2" and 3" quartiles.

Sampling Strategy and Mapping Performance
Mixed-cluster sampling outperformed random, sys-
tematic, and stratified-random sampling (Table 4) in
that this sampling strategy had a higher cross-valida-
tion index (k-w x> = 35.5; df = 3; p < 0.001). Spa-
tial auto-correlation (structural variance) was mod-
eled similarly for all 4 methods (Table 4), but
systematic sampling performed slightly poorer than
mixed-cluster, random, and modified stratified-ran-
dom (k-w x> = 11.6; df =3; p < 0.009). The sample
point mean for mixed-cluster sampling (1.51), how-
ever, was less biased and much closer to the reference
map mean (1.52) than for the other 3 sampling strat-
egies (k-w x* = 20.2; df = 3;p < 0.001). The lower
slope values for the systematic, random, and modified
stratified-random sampling strategies (Table 4) further
reflect this.

Sample point density and mapping performance

Sample point density had a dramatic effect on map-
ping performance. Sample performance decreased al-
most linearly over the range 1000 — 5000 m (Figure
5), and variance increased by orders of magnitude for
the 10,000 and 20,000 m spacing.

Mapping approach and power to detect spatial
effects

The 4 different mapping approaches used to compare
bird density between a fragmented and un-fragmented
landscape (Figure 6a-b) resulted in substantially dif-
ferent estimates of population density. The spatial
only approach exaggerated the differences between
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Table 4. Effect of sampling strategy on performance indices'.

Spacing (m) N

Prop of structural variance

SV r*  Kriging > Slope  Sample* Mean

Mixed-cluster 5325 2025 0.732
Systematic 720 2009 0.698
Random Variable 2020 0.756

Stratified — Random Variable 2121 0.727

0942  0.590 1.006  1.511
0.983  0.408 0.959 1492
0.980  0.460 0.957  1.490
0942 0362 0916  1.495

"Values based on means of 10 sampling simulations.
’Reference map mean = 1.52.
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Figure 5. Effect of sample spacing (intensity) on mapping
performance. Performance indices (cross-validation 1?) are for
S-point cluster sampling of LV2; sample size varied between 60
— 16,785 for sample spacing over the range 20,000 — 1,000 m.
Values are averages for 5 simulated point-sample selection runs.

landscapes by underestimating the true values, and
densities within the 2 landscapes varied considerably
from the reference means (Table 5). The habitat only
approach had insufficient sensitivity to detect spatial
effects; so estimated density differed only marginally
between landscapes for the mature forest habitat type
(Table 5), and was overestimated for the fragmented
landscape. Co-kriging improved the estimates of
mean population density slightly over global OPK,
but still created a negatively biased estimate for the
fragmented landscape. Stratified OPK performed
markedly better, and accurately detected the differ-
ence in mean values for the fragmented and un-frag-
mented landscapes (Table 5).

Assessment scale versus mapping performance

We found that for high variance and low variance
reference maps, stratified OPK outperformed global
kriging, and that the difference in performance was
greatest at finer spatial scales (Figure 7). For broader

scale comparisons (> 360 ha), performance for the
2 techniques began to converge. For the high variance
HV2 simulation, the performance response was not
linear across scales, and for both techniques, perform-
ance peaked at the 30 — 70 ha scale.

Sample point density and power to detect spatial
effects

Partial correlation coefficients for the multiple linear
regression analysis of the accuracy index A versus
inter-cluster spacing, number of points within a clus-
ter, and total number of points, reveal that inter-clus-
ter spacing is the most important variable for
predicting accuracy within this study. The plot of in-
ter-cluster spacing versus A reveals that error
increases almost linearly as inter-cluster distance in-
creases, and is further increased if number of points
within a cluster is reduced from 5 to 3 (Figure 8). This
pattern is similar to the response of sample cross-
validation conducted for global OPK (Figure 5), and
suggests the decrease in performance for stratified
OPK is a result of the composite errors of the sepa-
rately kriged layers that comprise the stratified OPK
result. Similarly, the plot of error versus total sample
size reveals that both error in individual runs, and
overall variance among runs, decreases as sample size
increases (Figure 9).

Field test of sampling strategy logistics

To test the feasibility of the mixed-cluster sampling
strategy we attempted to implement the computer-
based strategy in a study of breeding boreal forest
birds in northwestern Ontario. The logistical difficul-
ties imposed by forest access prevented us from
strictly following the computer generated sampling
design. Instead, we used the general principles gen-
erated from the simulation studies to approximate the
sampling strategy. We found a close approximation of
the computer generated mixed-cluster sampling can
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Figure 6. Comparison of maps created from (a) global OPK, (b) non-spatial habitat-based assignment, (c) co-kriging, and (d) stratified OPK.
Polygon on mid-left side delineates the fragmented landscape, and polygon at upper-middle delineates the un-fragmented landscape. Colors

as in Figure Ic.

Table 5. Comparison of mean bird density values (in mature forest only) between reference map and maps created from alternative mapping

approaches.

Landscape’  Reference value  Habitat alone Spatial alone (global Spatial (co-kriging) Spatial + habitat (stratified OPK)
OPK)

Fragmented 1.5168 1.6191 1.1989 1.2717 1.5686

Un-frag- 1.6953 1.6717 1.5945 1.6512 1.6998

mented

'"Fragmented refers to age-class fragmentation created by dispersed harvest-block cutting.

be achieved by utilizing a GIS to display a coarse
satellite-based landcover map and road network, and
to set sample clusters 5 km apart.

The landcover classification was simple, and
included categories such as mature versus young co-
nifer or mixedwood. Points within clusters were con-
strained to be a minimum distance apart (e.g., 250 m),
and to be at least 100 m from stand boundary. Ap-
proximate locations of sample points were uploaded
from the GIS into a hand-held GPS, and field staff
using the GPS recorded the exact location of the

sample sites, after adjusting the site location based on
stand-edge proximity. The nearest-waypoint function
of the hand-held GPS was used to insure the proper
distance between sample points was maintained. In
this study, three field technicians sampled 2 points
within each cluster (totaling 6 points per cluster), and
generally 3 clusters (18 points) were sampled before
10 am, when the songbird recording-window closes.

Although the assumption of randomness is partially
violated (as it almost always is for boreal forest sam-
pling because of access issues), the spatial dispersion
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Figure 7. Multi-scale performance assessment of stratified (circles) versus global (squares) ordinary point kriging (OPK) for low variance (a)
and high variance (b) maps, respectively; 1? is the correspondence of bird density (weighted means) in hexagons for the reference and in-
terpolated maps, respectively. For the low variance map (a), performance of stratified OPK is consistently higher than global OPK, but per-

formance for the two methods converge at broader spatial scales.

of sample points is suitable for estimating spatial-au-
tocorrelation, and habitats are sampled in proportion
to their occurrence at the local (2500 ha) scale.

Discussion

The results of this study provide some insight into the
performance of alternative sampling and mapping ap-
proaches for reconstructing patterns of distribution
and abundance. The most obvious concerns and limi-
tations of the study are that (1) the results pertain to a
simulated bird species, not a real population, (2) the
range of simulated site-level variation for LV1, LV2,
HV1 and HV2 may not adequately reflect the range
of site-level variation for real boreal birds, (3) the
simulated species adhere to relatively well defined
habitat associations, and real species may not, (4)
habitat association mean values are stable across the
study area, and (5) there is no variation in detection

probability at any point. However, this study is
focused at understanding the relative performance of
alternative sampling and interpolation techniques, so
more realistic simulation of regional level variation in
ecological behavior of birds would likely not have
changed any of the mapping performance interpreta-
tions. An alternative approach would be to simulate
multiple reference landscapes using a general model,
such as that developed by Saura and Martinez-Millan
(2000). This would permit a more general analysis of
sampling and interpolation performance, but would
be less realistic than our approach. A useful next step
would be to examine the effectiveness of the mixed-
cluster sampling approach under a variety of land-
scape patterns and spatial distributions that are
simulated for different ecoregions, but still based on
satellite-interpreted landcover maps.

The most successful sampling technique in this
study was the mixed-cluster strategy. This approach
was a combination of systematic, random, and clus-
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Figure 8. Effect of cluster spacing on error (distance) between weighted-mean values for reference and interpolated maps in the fragmented
landscape (see Figure 6d). Interpolated map was created through stratified OPK using mixed-cluster point sampling data. The accuracy of
bird density estimates derived from the sampling scheme of 5-point clusters at 10,000 m spacing was poor relative to the 5,000 and 2,000 m

spacing scheme.

tered components, in that the selection starting point
is regularly spaced (the centroid of the hexagonal
grid), and all selected points were random locations,
within a specified distance from the starting point.
The procedure was stratified in two ways: water was
excluded from the samples, and also there was a con-
textual constraint of restricting samples to patches of
> 10 ha, and > 100 m from edge. This ensured that
the sample point is placed in a predominant habitat
type found in the vicinity of the starting point. This is
a complex sampling strategy that appears to effec-
tively capture the underlying spatial variance that is
characteristic of a forested landscape shaped by con-
tagious and spatially structured events such as wild-
fire and logging. Other sampling strategies may
perform better in other types of landscapes, so pre-
study modeling and evaluation of strategies is an im-
portant first step. Fortin et al. (1989) also found that
sample designs that incorporated varying sample
steps, such as the “systematic-cluster design”, were
most suitable for detecting spatial structure.
Ordinary point kriging has become a popular ap-
proach to mapping patterns of distribution and abun-
dance in animals (e.g., Villard and Maurer 1996;
McKenney et al. 1998; Venier et al. 1999) but it is

not the only approach to interpolation, nor always the
best. When kriging is applied to all sample points, the
model is termed global kriging (Wallerman et al.
2002). For terrestrial ecology, a weakness of global
kriging is the inability to recognize discrete strata that
separate the functional response of animals. Consider,
for example, a bird that prefers to nest in the canopy
of tall trees. Interpolation of point samples that fall
on the opposite sides of a clear cut will not account
for this discontinuity in habitat. In geostatistical
terms, the spatial discontinuity results in a statistical
model that violates the principle of stationarity (Goo-
vaerts 1997), and kriging within strata (stratified
OPK) becomes a reasonable alternative (e.g., Fortin
et al. 1989; Goovaerts 1997; Gunnarsson et al. 1998;
Burrough 2001). Of the 4 approaches that we inves-
tigated to address bird abundance mapping, only
stratified OPK was able to effectively detect both the
spatial and habitat relationships found within the data.

Assessing the performance of global OPK, includ-
ing OPK with co-variates, can be done relatively eas-
ily using cross-validation statistics. Assessing per-
formance of stratified OPK is more complex. On one
hand, performance measures are improved because
habitat information is incorporated by the stratifica-
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tion procedure, but on the other hand, the lower num-
ber of point samples within a stratum decreases
performance statistics. One solution that deserves
further investigation is to combine the separate
experimental semivariograms into a pooled semivari-
ogram, where the pooled value is weighted by the
number of pairs in the relevant contributing semivari-
ogram (Goovaerts 1997).

The accumulation and interaction of errors across
and among layers is more complex than a simple joint
probability of errors derived from the individual or-
dinary point kriging layers. The spatial variance is not
stationary, and the validity of creating a stratified-
kriging variance map by overlaying the contributing
OPK variance maps is questionable. As well, the re-
liability of the estimates is in part a function of sam-
pling strategy. Our approach to assessing error in this
study was empirical (we used Monte Carlo techniques
to compare simulated densities in two landscapes in a
manner that would resemble an actual application of
the data), but further theoretical work may be helpful
(e.g., Sadahiro 1999). None-the-less, the use of simu-
lated abundance data based on actual landcover data,
with bird means and variances reflecting dominant
habitat patterns on the landscape, is an important first
step in understanding the influence of various

sampling and mapping strategies on the ability to de-
tect landscape-level effects on animal abundance.
With stratified OPK, the habitat value of every cell is
known; hence finite sampling theory may be applica-
ble for estimation and inference, and this also
deserves further investigation (see Valliant et al.
2000).

This study of computer-generated sampling
schemes enabled the evaluation of general principles
for alternative sampling schemes, as well as detailed
parameter selection. We found that implementing the
mixed-cluster sampling scheme in the boreal forest
involved incorporating general principles into actual
field sample-point selection, but we could not use ex-
act locations provided through computer generation
of sample points. In general terms, the mixed-cluster
scheme ensures a relatively even but staggered distri-
bution of clusters across the landscape. Incorporating
a random component to the starting point of the clus-
ter ensures variability in inter-cluster distances, and
incorporating random variability to the within-cluster
point locations ensure habitats are selected approxi-
mately in proportion to their occurrence at a local
scale, and ensures added variability in inter-point dis-
tances. This spectrum of inter-point distances im-
proves the estimation of spatial auto-correlation, and



the relatively even dispersion of clusters across the
landscape reduces the effects of spatial holes in the
abundance estimates. Mapped spatial error (variance)
decreases as a function of the number of sample
points available in the neighborhood window, thus a
relatively even dispersion of points is necessary to
maintain relatively homogeneous variance across the
interpolated map. In logistical terms, the clustered
approach is one of the most cost-effect techniques for
large-scale avian monitoring (Carlson 2001), and if
modified appropriately, is also very effective for esti-
mating spatial auto-correlation and producing maps
(spatially explicit models) of wildlife abundance. Fu-
ture enhancements to the computer-sampling program
will include distance-related cost-functions to permit
more accurate cost-effectiveness evaluation of alter-
native sampling schemes.

Conclusions

Within the scope and limitations of this study (as dis-

cussed above) the following conclusions are made

about sampling performance for the objective of me-
dium to broad scale mapping of avian abundance.

1. Stratified OPK was the most effective of the analy-
sis techniques investigated. It successfully detects
and models both spatial and non-spatial (stand
level habitat association) information from the
dataset to reconstruct patterns of distribution and
abundance. This was the only technique to effec-
tively discriminate bird density in landscapes
where a spatial fragmentation effect had been en-
coded in the reference data set.

2. Performance of ordinary and stratified OPK tends
to converge when evaluated at broad spatial scales
> 4000 ha. OPK can be used effectively for broad
scale, regional analysis, but stratified OPK is more
effective for finer scale, habitat based analyses.

3. Mixed-cluster sampling, as uniquely defined in this
study, is an effective sampling strategy. Bias in the
estimate of abundance was low, mapping perform-
ance across spatial scales was high, and mixed-
cluster sampling performed equally well to alterna-
tive methods in terms of modeling structural
variance. Logistically, it is among the easiest and
least costly strategies to implement in the field.

4. Mapping performance increases significantly if
sampling is restricted to habitat patches > 10 ha.
Restricting sample points to locations > 100 m
from stand edge produced similar results because
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stands must be at least 9 ha to have potential
sample point locations beyond that minimum dis-
tance.

5. For mixed-cluster sampling, the errors in both glo-
bal and stratified OPK are first a function of the
spacing between clusters, and second, the number
of points within a cluster. For this simulation study,
both 3-point clusters at 2000 m staggered spacing
and 5-point clusters at 5000 m staggered spacing
had sufficient “spatial power” to correctly detect
landscape-level effects of fragmentation if the
maps were created using stratified OPK. This cor-
responds to about 8000 and 2000 points, respec-
tively, or 0.8 and 0.2 points / km?.

6. In practice, a close approximation of the computer
generated mixed-cluster sampling was achieved by
utilizing the combined spatial data technologies of
satellite imagery, road network maps, GIS and GPS
spatial data management software, and hand-held
GPS units. Sample clusters were set 5000 m apart,
and points within clusters were constrained to be a
minimum of 250 m apart, and to be at least 100 m
from stand boundary or road.
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